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Abstract
Autonomous Lienard systems, which constitute a huge family of periodic
motions, exhibit limit cycle behaviour in certain cases and centres in others.
In the literature, the signature for the existence of these two different facets
of periodic behaviour has been studied from different geometrical perspectives
and not from a general viewpoint. Starting out from general considerations,
we show in this work that a certain renormalization scheme is capable of
unifying these two different aspects of periodic motion. We show that the
renormalization group allows a unified analysis of the limit cycle and centre in
a Lienard system of differential equations. While the approach is perturbative,
it is possible to make a stronger statement in this regard. Two different classes
of Lienard systems have been considered. The analysis provides clear insight
into how the frequency gets corrected at different orders of perturbation as one
flips the parity of the ‘damping’ term.

PACS number: 05.10.Cc

The most commonly occurring periodic motions in physical, chemical and biological systems,
as well as in engineering applications, belong to second-order autonomous Lienard systems
of differential equations. In the literature [1–3] extensive studies exist pertaining to renowned
oscillators which go after the names of Duffing, Van der Pol, Raleigh, to mention just a
few. In practice, it is often necessary to understand the specific nature of the system under
consideration, namely whether its trajectory in phase space succumbs to a limit cycle or
revolves around a centre. Various theorems and methods have been developed to address this
question in the context of Lienard systems and even beyond. These theorems have elegant
geometric proofs [4–6] which are different for different situations. However, a unified way of
probing whether a system has a limit cycle or centre is lacking in the literature. Integrability
of a class of Lienard and related systems has seen a great deal of progress in the recent years
[7–10], but our concern here will be with the issue of limit cycle as opposed to the nonlinear
centre.
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Studying differential equations from the point of view of renormalization group (RG)
symmetries has been an interesting and challenging field of research for some years. Several
detailed and authoritative reviews exist in the field [11]. A decade back, a different way of
looking at problems of nonlinear dynamics of oscillations has been proposed by Chen et al
[12] and has been explored by several groups [13]. This involves a direct use of perturbation
theory and the renormalization group. The advantage lies in the fact that an initial ansatz
[4, 14, 15] for the form of the final solution is not required. For detailed pedagogic surveys,
we refer the reader to two recent works [16, 17]. This renormalization method opens a new
avenue for studying the dynamics of Lienard systems from a general parlance. We begin with
a brief explanation of the method itself and then proceed to more general considerations.

We introduce the renormalization method here very briefly through a simple example of
a quartic oscillator:

ẍ = −ω2x − λx3 (1)

where λ is supposedly small. To solve the equation perturbatively, one starts with the
expansion x(t) = x0(t) + λx1(t) + · · · and obtains the zeroth-order (unperturbed) equation as
ẍ0 + ω2x0 = 0 with the harmonic solution x0 = a cos(ωt + θ). Using this solution in the
first-order equation ẍ1 + ω2x1 = −x0

3, the solution x(t) is obtained as

x = a cos(ωt + θ) + λ

[
− 3a3

16ω2
cos(ωt + θ) − a3

32ω2
cos 3(ωt + θ)

]
− 3a3

8ω
· λt · sin(ωt + θ).

(2)

The last term is divergent. In the renormalization scheme, this secular divergence
is contained by introducing an arbitrary time scale μ and writing the divergent term as
− 3a3

8ω
· λ(t − μ + μ) · sin(ωt + θ). At this point renormalization constants Z1(μ) and Z2(μ)

are introduced as a(0) = Z1(μ)a(μ) = a(μ)(1 + A1λ + · · ·) and θ(0) = θ(μ) + Z2(μ) =
θ(μ) + B1λ + · · · . These perturbartive expansions of Z1 and Z2 are defined in such a way that
the μ divergence in μ sin(ωt + θ) is nullified. Accordingly, we find A1 = 0 and B1 = μ

3a2(μ)

8ω

and equation (2) becomes

x = a(μ) cos(ωt + θ(μ)) + λ

[
−3a3(μ)

16ω2
cos(ωt + θ(μ))

− a3(μ)

32ω2
cos 3(ωt + θ(μ)) − (t − μ)

3a3(μ)

8ω
sin(ωt + θ(μ))

]
. (3)

Since μ is an arbitrary time scale, the dynamics is independent of μ and hence dx
dμ

= 0.
This is the RG equation which, on equating the coefficients of cos(ωt+θ(μ)) and sin(ωt+θ(μ)),
yields the amplitude and phase equations, respectively, as

da

dμ
= 0 ⇒ a is a constant,

dθ

dμ
= 3a2λ

8ω
⇒ θ = μ

3a2λ

8ω
.

(4)

The remaining μ dependence is removed by setting μ = t (because μ is arbitrary). Thus,

x = a cos

(
ω +

3a2λ

8ω

)
t − λ

[
3a3

16ω2
cos(ωt + θ) +

a3

32ω2
cos 3(ωt + θ)

]
. (5)

This is the renormalized form of x to the first order. The important point to note is that
if our aim had been to obtain only the amplitude and phase equations (equation (4)), we
could have directly written them by merely inspecting equation (2). The recipe is simple. If
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the divergent term is of the form A1 · t cos(ωt + θ), where A1 is a constant, then this term
contributes to the amplitude equation as da

dμ
= A1. On the other hand, if the divergent term is

of the form A2 · t sin(ωt + θ), where A2 is a constant, then this term contributes to the phase
equation as dθ

dμ
= −A2

a
. In equation (2), there was no t cos(ωt +θ) term and hence we obtained

da
dμ

= 0. It only contained a divergent term of the form
(− 3a3

8ω
λ
)
t sin(ωt + θ) and hence for

dθ
dμ

we obtained (−1/a)
(− 3a3

8ω
λ
)
. In this process we note a vital point. This system has a

centre-like oscillation and we find that the flow equation gives da
dμ

= 0. This is intuitively
correct since the amplitude is fixed by initial conditions and hence cannot flow. For the limit
cycle, on the other hand, we must have a fixed point in the dynamics of da

dμ
.

We now turn our attention to a general Lienard system exhibiting periodic solution. More
precisely, we focus our study on Lienard systems of the first kind. To allow the use of
perturbation theory we write it in the form

ẍ + εf (x)ẋ + x + αg(x) = 0. (6)

We make no claim that, mathematically, this is the most general form of Lienard system
conceivable. But, this system, of course, is sufficiently general as to encompass a very wide
class of periodic motion occurring ubiquitously in various branches of physical, chemical
as well as biological sciences. At the end of the paper, we will allude to another class
of Lienard system, which we call the Lienard system of the second kind. The form of
equation (6) ensures that, in the unperturbed condition, the system executes harmonic motion.
The primary requirement for a periodic motion is a trapping potential which is achieved by
setting the function g(x) as odd. Thus, we write

g(x) =
∞∑

n=1

dnx
2n+1 (7)

as a series in odd powers of x.
Our aim is to investigate what happens when f (x) is an odd function and what happens

when it is even. We intend to do this investigation in a unified way by writing f (x) as a sum
of two series: one consisting of even powers of x and the other consisting of odd powers of x.
For example, when we are interested in the consequences of f (x) being an odd function, we
will simply put off the even coefficients from our general results and work only with the odd
coefficients. Thus,

f (x) =
∞∑

n=0

[bnx
2n + cnx

2n+1]. (8)

We expand x in ε and α as

x(t) = x0(t) + εx1ε(t) + αx1α(t) + ε2x2ε(t) + α2x2α(t) + εαxεα(t) + · · · . (9)

It should be clear from the notation that (x1ε, x1α) are the first-order terms and
(x2ε, x2α, xεα) are the second-order terms. To linear order in ε and α,

ẍ0 + x0 = 0 (10)

¨x1ε + x1ε = −ẋ0f (x0) (11)

¨x1α + x1α = −g(x0). (12)

The zeroth-order equation given by equation (10) immediately yields

x0 = A cos t + B sin t = a cos(t + θ). (13)
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We now turn to the first-order system. The right-hand side of equation (11) can be written
as

−ẋ0f (x0) = −ẋ0

∞∑
n=0

(
bnx

2n
0 + cnx

2n+1
0

)

= − d

dt

∞∑
n=0

[
bn

2n + 1
x2n+1

0 +
cn

2n + 2
x2n+2

0

]
(14)

and for the right-hand side of equation (12) we have from equation (7)

g(x0) =
∞∑

n=1

dnx
2n+1
0 . (15)

For a given n, with x0 = a cos(t + θ) we have

x2n+1
0 = a2n+1 cos2n+1(t + θ)

= a2n+1
n∑

k=0

1

22n
C2n+1

k cos(2n − 2k + 1)(t + θ), (16)

where Cb
a = b!

a!(b−a)! . What we have seen is that only the resonance inducing term is important

for the flow and hence the relevant part of x2n+1
0 is the k = n term on the right-hand side of

equation (16), namely a2n+1

22n C2n+1
n cos(t + θ). From the formula

cos2nφ = 1

22n
C2n

n +
1

22n−1

n−1∑
k=0

C2n
k cos(2n − 2k)φ (17)

we clearly see that there is no such relevant part coming from the x2n+2
0 term of equation (14).

Thus, equations (11) and (12), respectively, yield

¨x1ε + x1ε =
∞∑

n=0

bn

2n + 1

a2n+1

22n
C2n+1

n sin(t + θ) + nonresonant terms (18)

¨x1α + x1α = −
∞∑

n=1

dn

a2n+1

22n
C2n+1

n cos(t + θ) + nonresonant terms. (19)

It is useful to recall that cos(t + θ) or sin(t + θ) on the right-hand side will, respectively,
give (1/2)t sin(t + θ) or −(1/2)t cos(t + θ) as the secular term. Thus, including only the
divergent part of the solution, to the first non-trivial order,

x = a cos(t + θ) − ε

2

∞∑
n=0

bn

2n + 1

a2n+1

22n
C2n+1

n t cos(t + θ) − α

2

∞∑
n=1

dn

a2n+1

22n
C2n+1

n t sin(t + θ)

= a cos(t + θ) − ε

∞∑
n=0

bn

2n + 1

(a

2

)2n+1
C2n+1

n (t − μ + μ) cos(t + θ)

− α

∞∑
n=1

dn

(a

2

)2n+1
C2n+1

n (t − μ + μ) sin(t + θ). (20)
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The first-order RG equations are obtained by first removing the μ-divergence and then
imposing

dx

dμ
= da

dμ
cos(t + θ(μ)) − a

dθ

dμ
sin(t + θ(μ))

+ ε

∞∑
n=0

bn

2n + 1

(a

2

)2n+1
C2n+1

n cos(t + θ(μ)) + α

∞∑
n=1

dn

(a

2

)2n+1
C2n+1

n sin(t + θ(μ))

= 0. (21)

The amplitude and phase equations follow directly (by comparing coefficients of
cos(t + θ(μ)) and sin(t + θ(μ)):

da

dμ
= −ε

∞∑
n=0

bn

2n + 1

(a

2

)2n+1
C2n+1

n (22)

dθ

dμ
= α

∞∑
n=1

dn

2

(a

2

)2n

C2n+1
n . (23)

The interesting information that we get is, to the first order, the amplitude equation is
taken care of solely by the bn-coefficients (which were the coefficients for the even series in
the expansion of f (x)). The amplitude fixed points are obtained by putting da

dμ
= 0 and then

solving for the algebraic polynomial in a. The roots of that polynomial will yield the fixed
points for the amplitude. Stability, as usual, follows from the sign of the derivative. The
important point is that in the amplitude equation there are no cn-coefficients (which were the
coefficients for the odd series in the expansion of f (x)). Thus, an odd f (x) (bn = 0 for all
n) cannot influence the limit cycle property and hence implies the existence of a centre. It is
straightforward to see that this statement is valid to all orders.

To understand this we outline the argument at the second order. Using equations (8) and
(9) in equation (6), we obtain the second-order equations as

ε2 : ¨x2ε + x2ε = − ˙x1εf (x0) − ẋ0x1εf
′(x0) (24)

α2 : ¨x2α + x2α = −x1αg′(x0) (25)

εα : ¨xεα + xεα = − ˙x1αf (x0) − ẋ0x1εf
′(x0) − x1εg

′(x0), (26)

where the functions f ′ and g′ are derivatives of f and g, respectively, with respect to x.
Precisely,

f ′(x0) =
∞∑

n=0

[
2bnnx2n−1

0 + (2n + 1)cnx
2n
0

]
(27)

and

g′(x0) =
∞∑

n=0

(2n + 1)dnx
2n
0 . (28)

If bn = 0, then the functions f (x0) and f ′(x0) have terms of the forms cos(2l + 1)(t + θ)

and cos 2l(t + θ) respectively (l = 0, 1, 2, . . .). Similarly, g(x0) and g′(x0) are of the types
cos(2l + 1)(t + θ) and cos 2l(t + θ), respectively (l = 1, 2, . . .). From equations (11) and
(14), we get that (for bn = 0) the renormalized x1ε has terms only of the form sin 2l(t + θ)

(with l = 1, 2, . . .). Similarly, from equations (12) and (15), renormalized x1α has terms of

5
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the form cos(2l + 1)(t + θ) (with l = 1, 2, . . .). Therefore, on the right-hand side of equation
(24), neither of the two terms contribute a sin(t + θ). Similarly, the term on the right-hand
side of equation (25) does not lead to any sin(t + θ). On the right-hand side of equation (26),
the first term, namely ˙x1αf (x0), has terms of the form sin(2l + 1)(t + θ) cos(2k + 1)(t + θ) and
hence does not yield a sin(t + θ) (only even multiples occur). Similarly, the term x1εf

′(x0)

has terms cos(2l + 1)(t + θ) cos 2k(t + θ) and hence, again, no sin(t + θ). Finally, the last
term of equation (26), being of the form sin 2l(t + θ) cos 2k(t + θ), also does not yield any
sin(t + θ). Consequently, the expansion for x(t) has no secular term of the form t cos(t + θ)

at O(ε2, α2, εα). As a result, da
dμ

= 0 at this order as well. This is the argument that can be

carried out systematically to all orders to show that da
dμ

= 0. The flow dθ
dμ

gives correction to
the frequency, and for sufficiently small ε, α and amplitude, we will always have a non-zero
value of the frequency, so that an oscillatory state will be achieved with a clear upper limit on
the amplitude of the oscillations when α = 0. One important point needs mention here. In
the above analysis, though we saw that no sin(t + θ) term occurs on the right-hand sides of
equations (24)–(26), there do occur some cos(t + θ) terms, as can be easily seen. Precisely,
they come from the first terms on the right-hand sides of equations (24)–(26). These secular
cos(t + θ) terms make contributions to the second-order RG equation for phase, i.e. dθ

dμ
. Those

cos(t + θ) terms which come from the function f (x0) obviously contain the cn-coefficients.
We saw that in equation (23), there were no cn-coefficients at the first order. Therefore,
an important conclusion is that, if the function f (x) is odd (i.e. bn = 0 for all n), then the
correction to the frequency coming from these cn-coefficients does not occur before the second
order. The first-order equations are blind to the fact that f (x) is odd.

This type of RG is also capable of dealing with a Lienard system of the second kind which
is not a frequently addressed topic of mathematical physics. They are of the form

ẍ + εf (x)ẋ2 + x + αg(x) = 0. (29)

This equation, when compared with equation (6), shows a change in symmetry for the
f (x) term. To study how the behaviour of this system is influenced by the type of the function
f (x), we go to the simple case of α = 0 in equation (9). The equations for various orders can
be found as before,

ẍ0 + x0 = 0 (30)

¨x1ε + x1ε = −ẋ0
2f (x0) (31)

¨x2ε + x2ε = −ẋ0
2x1εf

′(x0) − 2ẋ0 ˙x1εf (x0). (32)

The solution for x0 is a cos(t + θ) and the driving term for x1 is
− a2

2 (1 − cos 2(t + θ))
∑ (

bnx
2n
0 + cnx

2n+1
0

)
. The term bnx

2n
0 can only produce driving terms

of the form cos 2l(t + θ) (with l = 0, 1, 2, . . .). The resonant driving term comes from
a2

2 (1 − cos 2(t + θ))
∑

cnx
2n+1
0 . The relevant part (i.e. that which leads to a cos(t + θ) term

here), according to our earlier discussion (for a fixed n), is

a2

2
(1 − cos 2(t + θ))

cn.a
2n+1

22n
× [

C2n+1
n cos(t + θ) + C2n+1

n−1 cos 3(t + θ) + · · ·]
⇒ cn

(
a

2

)2n+1
a2

n + 2
C2n+1

n cos(t + θ) + nonresonant terms.

Thus, equation (31) takes the form

¨x1ε + x1ε = −cn

(
a

2

)2n+1
a2

n + 2
C2n+1

n cos(t + θ) (33)

6
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leading to

x = a cos(t + θ) − ε
a2

2

[ ∞∑
n=0

(
a

2

)2n+1
cn

n + 2
C2n+1

n

]
t sin(t + θ) + nondivergent terms. (34)

As before we set t = t − μ + μ, remove the μ-divergence and then demand dx
dμ

= 0 to get
da
dμ

= 0, (since there is no t cos(t + θ) term in equation (34)). Finally, from the phase equation
we have x = a cos(�t + θ), with the corrected frequency � given as

� = 1 + ε

∞∑
n=0

(
a

2

)2n+2
cn

n + 2
C2n+1

n + · · · . (35)

The absence of any bn-coefficients in this first-order frequency correction shows that the
even part of f (x) has no bearing with this result. An odd f (x) still supports a centre at the
origin, but the amplitude is restricted more strongly than in a Lienard system of the first kind.
As opposed to a Lienard system of the first kind, here we see that the cn-coefficients enter
the frequency correction in the very first order. As an example, our results show that for the
Lienard system of the first kind ẍ + εẋx + x = 0, the origin is a centre with the corrected
frequency to the lowest order given by � = 1 + ε2a

12 + · · ·. For the similar Lienard system
of the second kind ẍ + εẋ2x + x = 0, the origin is a centre with the frequency given by
� = 1 + εa2

8 + · · ·.
What if f (x) were even (i.e. cn = 0 for all n) in equation (29)? In that case, equation (31)

yields x1 = ∑∞
n,l=0 An,l cos 2l(t + θ). Of the two driving terms in equation (32), ẋ0

2x1εf
′(x0)

has the structure cos 2l(t + θ) cos(2k + 1)(t + θ), which means that there will be a
cos(t + θ) term but no sin(t + θ). Similarly, the other term ẋ0 ˙x1εf (x0) has the structure
sin(t + θ) sin 2l(t + θ) cos 2k(t + θ), which is a combination of odd multiples of cosine and
hence admits a cos(t + θ) but again no sin(t + θ). Thus at O(ε2), we still have da

dμ
= 0. This

argument can be systematically extended and we conclude that limit cycle oscillations are not
possible for the Lienard system ẍ + εf (x)ẋ2 +x = 0. Inclusion of an additional trapping term,
αg(x) (g(x) odd function), as written in equation (29), clearly does not change the scenario.
The first- and second-order equations for x1α remain the same as in equations (12) and (25)
respectively for the Lienard system of first kind. Therefore, as for the influence of the function
f (x) on the dynamics, the conclusions are clear and strong. For a Lienard system of the first
kind, if f (x) is even, then there are limit cycle oscillations. When f (x) is an odd function, it
supports a centre and the frequency correction does not occur before the second order. For a
Lienard system of the second kind, there is no limit cycle oscillation whatsoever. Corrections
to frequency come from the odd part of f (x) at the very first order.

To summarize, starting from a sufficiently general form of the Lienard system of
differential equation, we show that a renormalization scheme is capable of bringing the
study of the existence of limit cycles and centres on a common platform. This establishes the
fact that one need not have to contrive different geometric pictures in different contexts, as is
commonly done in the literature, to probe whether a certain Lienard system will have limit
cycles or centre. As the study is perturbative, one can also clearly see how the frequency gets
corrected in different orders. The approach is general and is capable of addressing a huge
class of dynamical systems encountered in practice, as it has been shown here by addressing
the two different classes of Lienard systems.
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